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Abstract Deontic logic is the logic of obligation, permission and prohibi-
tion. Linear logic is a resource conscious logic which is well-known
within computer science. Petri nets are models of concurrent dynamic
processes which have been used in hundreds of applications. In this pa-
per, we present a deontic linear system with Petri net semantics. This
system has two advantages over modal and relevantist deontic logic:
(1) it is free from many of the so-called ‘paradoxes’ which plague the
latter approaches; (2) its semantics are related to modelling techniques
which are actually used in practice.

Keywords Deontic logic, Eubouliatic logic, Linear logic, Petri nets, Rele-
vance logic

1 Introduction

In 1996, Mark Brown presented a paper in which he described the ‘paradoxes
of cumulative obligations and permissions’, as he called them [9]. These para-
doxes rest on the observation that being obliged to do A once is intuitively

∗This research was partially funded by Esprit III Basic Research Working Group 8319
ModelAge. The author is grateful to Nuel D. Belnap, Jr., for drawing his attention to
Anderson’s writings on deontic and eubouliatic relevance logic. Earlier versions of this
paper appeared as [20] and [19].
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different from being obliged to do A twice; similarly, having two obligations
to do A is intuitively different from having just one obligation to do A. The
same applies, mutatis mutandis, to permission. Standard deontic logic can-
not express these differences. One might try to represent being obliged to do
A twice by O(A∧A) and having two obligations to do A by OA∧OA, where
O stands for ‘it is obligatory that’. But this won’t work, since according to
standard deontic logic the latter formulas are provably equivalent with OA.

After giving his lecture, Mark Brown was approached by several people
who suggested to him that these paradoxes might conceivably be resolved by
using linear logic. Linear logic is a ‘resource conscious’ logic which is well-
known in computer science but less well known in philosophy [11, 17, 29]. It
has a ‘multiplicative’ conjunction operator ⊗ such that A is in general not
equivalent with A⊗A. Brown was clearly interested, but nobody could give
him any reference because deontic linear logic is a subject which has not yet
been studied.

In this paper, we will do two things. First, we will present a system of
deontic linear logic and compare it with standard modal deontic logic and
deontic relevance logic. It will turn out that the new system is free from
several of the paradoxes (including Brown’s cumulative paradoxes) which
plague the latter systems.

Secondly, we will present a variant of the linear deontic system which is
sound and complete with respect to a certain class of models defined in terms
of Petri nets. Petri nets are models of concurrent, asynchronous, distributed,
nondeterministic dynamic processes. They are not well-known in philosophy,
but they have been used in hundreds of applications in the real world [24,
25, 26, 27]. It might therefore be argued that the semantics of our linear
system are far less ‘academic’ than the algebraic, geometric and possible
world semantics of modal and relevantist deontic logic.

2 Four Alethic Systems

The deontic systems we will discuss are based on the following alethic sys-
tems. Our notation is more or less the same as that of [7], but we write ⊗
instead of ◦.

1. System LL. Linear logic without exponentials [7].

• Syntax. A ::= 1|T|F|a|¬A|A ⊗ A|A → A|A ∧ A|A ∨ A, where
a ranges over a countable set of atomic assertions AT. 1 is pro-
nounced as ‘one’, T as ‘true’, F as ‘false’, ¬ as ‘not’, ⊗ as ‘times’,
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→ as ‘entails’, ∧ as ‘with’ and ∨ as ‘plus’. ⊗ and → are known
as ‘multiplicative’ connectives, ∧ and ∨ as ‘additive’ connectives.

• Definition.

(a) A↔ B = (A→ B) ∧ (B → A)

• Axiomatization.

(a) (A→ B)→ ((B → C)→ (A→ C))

(b) (A→ (B → C))→ (B → (A→ C))

(c) (A ∧ B)→ A

(d) (A ∧ B)→ B

(e) ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))

(f) A→ (A ∨B)

(g) A→ (B ∨ A)

(h) ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

(i) A→ (B → (A⊗B))

(j) (A→ (B → C))→ ((A⊗ B)→ C)

(k) ¬¬A→ A

(l) (A→ ¬B)→ (B → ¬A)

(m) 1

(n) 1→ (A→ A)

(o) A→ T

(p) F→ A

(q) A,A→ B / B

(r) A,B / A ∧B

2. Relevant system R [4, 5, 7].

• Syntax. Same as that of LL. ⊗ is pronounced as ‘is co-tenable
with’, → as ‘entails’, ∧ as ‘and’, and ∨ as ‘or’. ⊗ and → are
‘intensional’, ∧ and ∨ ‘extensional’.

• Axiomatization. Same as that of LL, but add the following ax-
ioms:

(a) (A→ (A→ B))→ (A→ B)

(b) (A ∧ (B ∨ C))→ ((A ∧B) ∨ C)

The former axiom may be replaced by

(a′) (A→ (B → C))→ ((A→ B)→ (A→ C))
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3. Modal system S4 with strict implication as the only primitive inten-
sional connective [12].

• Syntax. A ::= T|F|a|¬A|A→ A|A∧A|A∨A. → is read as ‘strictly
implies’. The other symbols are pronounced as in R.

• Definition.

(a) A↔ B = (A→ B) ∧ (B → A)

• Axiomatization.

(a) A→ A

(b) (A→ (B → C))→ ((A→ B)→ (A→ C))

(c) (A→ B)→ (C → (A→ B))

(d) (A ∧ B)→ A

(e) (A ∧ B)→ B

(f) (A→ B)→ ((A→ C)→ (A→ (B ∧ C)))

(g) A→ (A ∨B)

(h) A→ (B ∨ A)

(i) (A→ C)→ ((B → C)→ ((A ∨ B)→ C))

(j) (A ∧ (B ∨ C))→ ((A ∧B) ∨ C)

(k) A→ ¬¬A
(l) (¬A→ ¬B)→ (B → A)

(m) (A→ B)→ ((A→ ¬B)→ (A→ C))

(n) A→ T

(o) F→ A

(p) A,A→ B / B

4. Propositional calculus PC [12].

• Syntax. Same as that of S4. → is read as ‘materially implies’.
The other symbols are pronounced as in S4.

• Axiomatization. Same as that of S4, but add the following axioms:

(a) ((A→ B)→ A)→ A

(b) A→ (B → A)

3 Four Deontic Systems

In order to turn the just-presented systems into deontic systems, we use a
trick popularized (but not invented) by Alan Ross Anderson: we enrich the
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language with a constant assertion δ (read as ‘the desideratum’ or ‘the good
thing’) and define the concepts of obligation O and strong permission S in
terms of that assertion.

The following table presents the appropriate definitions and their first
occurrences in the literature.

Alethic Deontic Strong Permission Obligation
System System
PC DPC SA = A→ δ [we] OA = δ → A [8]
S4 DS4 SA = A→ δ [1, 30] OA = δ → A [15, 1]
R DR SA = A→ δ [3] OA = δ → A [2]
LL DLL SA = A→ δ [we] OA = δ → A [we]

SA may also be read as ‘A is prudent’, ‘A is safe’, or ‘A is without risk’.
Anderson used the name ‘eubouliatic logic’ for the logic of this concept [3].

The operators of strong prohibition, strong obligation, weak prohibition
and weak permission may be defined by FSA = ¬SA, OSA = FS¬A, FA =
O¬A and PA = ¬FA.

4 Comparison of the Deontic Systems

The just-defined four deontic systems are compared in table 1 (p. 6). A
‘+’ means that the alethic expansion of the deontic formula is a theorem
of the indicated system, a ‘−’ that it is not. A ‘⊕’ [‘	’] means that the
expanded formula is ill-formed but would turn into a theorem [non-theorem]
if ⊗ were replaced by ∧. Theoremhood may be established by giving a
suitable derivation, which is easy in every case. Non-theoremhood in LL
and R may be established by using the algebraic semantics presented in [7];
non-theoremhood in S4 and PC may be established by using possible worlds
semantics [14].

Table 1 makes it clear that DLL gives rise to a smaller number of para-
doxes than the other systems do. Rows 9–12 and 21–24 show that DLL
does not suffer from any of the Paradoxes of Cumulative Permissions and
Obligations [9]. Rows 13 and 25 show that it avoids some of the Paradoxes
of Conditional Permission and Obligation [6]. Rows 14 and 16, on the other
hand, show that DLL is not free from the Good Samaritan Paradox and
Ross’s Paradox [6].

DLL does not seem to give rise to some fatal new paradox. McArthur
[22] objected against theorem 17, but we simply regard it as convenient.
Theorem 18 is particularly attractive. It is an axiom of eight systems on the
Top Ten of modal deontic logic [6], whereas we get it for free.
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Deontic Formula Alethic Expansion LL R S4 PC

1 (A→ B)→ (SB → SA) (A→B)→((B→δ)→(A→δ)) + + + +
2 (SA ∧ SB)↔ S(A ∨ B) ((A→δ)∧(B→δ))↔((A∨B)→δ) + + + +
3 (SA ∨ SB)→ S(A ∧ B) ((A→δ)∨(B→δ))→((A∧B)→δ) + + + +
4 (A→ SB)→ (B → SA) (A→(B→δ))→(B→(A→δ)) + + − +
5 (A→ SB)↔ S(A⊗B) (A→(B→δ))↔((A⊗B)→δ) + + 	 ⊕
6 A→ SSA A→((A→δ)→δ) + + − +
7 (A→ SA)→ SA (A→(A→δ))→(A→δ) − + − +
8 (A→SB)→((A→B)→SA) (A→(B→δ))→((A→B)→(A→δ)) − + + +
9 SA→ (SA⊗ SA) (A→δ)→((A→δ)⊗(A→δ)) − + ⊕ ⊕

10 S(A⊗ A)→ SA ((A⊗A)→δ)→(A→δ) − + ⊕ ⊕
11 (SA⊗ SA)→ SA ((A→δ)⊗(A→δ))→(A→δ) − − ⊕ ⊕
12 SA→ S(A⊗ A) (A→δ)→((A⊗A)→δ) − − ⊕ ⊕
13 SA→ (B → SA) (A→δ)→(B→(A→δ)) − − + +
14 (A→ B)→ (OA→ OB) (A→B)→((δ→A)→(δ→B)) + + + +
15 (OA ∧ OB)↔ O(A ∧B) ((δ→A)∧(δ→B))↔(δ→(A∧B)) + + + +
16 (OA ∨ OB)→ O(A ∨B) ((δ→A)∨(δ→B))→(δ→(A∨B)) + + + +
17 (A→ OB)↔ O(A→ B) (A→(δ→B))↔(δ→(A→B)) + + − +
18 O(OA→ A) (δ→((δ→A)→A)) + + − +
19 OOA→ OA (δ→(δ→A))→(δ→A) − + − +
20 O(A→ B)→ (OA→ OB) (δ→(A→B))→((δ→A)→(δ→B)) − + + +
21 OA→ (OA⊗OA) (δ→A)→((δ→A)⊗(δ→A)) − + ⊕ ⊕
22 OA→ O(A⊗ A) (δ→A)→(δ→(A⊗A)) − + ⊕ ⊕
23 (OA⊗ OA)→ OA ((δ→A)⊗(δ→A))→(δ→A) − − ⊕ ⊕
24 O(A⊗ A)→ OA (δ→(A⊗A))→(δ→A) − − ⊕ ⊕
25 OA→ (B → OA) (δ→A)→(B→(δ→A)) − − + +
26 OA→ OOA (δ→A)→(δ→(δ→A)) − − + +
27 (A→ B)→ O(A→ B) (A→B)→(δ→(A→B)) − − + +
28 O(A→ A) (δ→(A→A)) − − + +

Table 1: Some theorems and non-theorems of DLL, DR, DS4 and DPC
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McArthur has called formula 20 a “sine qua non of any reasonable deontic
system” [22, p. 153]. (He did not motivate this claim.) DLL does not have it
as a theorem, but we do not think that DLL is unreasonable. We therefore
think that McArthur’s claim about 20 is wrong.

5 Petri Nets

One of the most interesting features of linear deontic logic is that it may
be interpreted in terms of Petri nets. This gives it a connection with actual
modelling practices which is lacking in the case of relevant and modal deontic
logic.

Petri nets are models of dynamic processes in terms of types of resources,
represented by places which can hold to arbitrary nonnegative multiplicity,
and how these resources are consumed or produced by actions, represented
by transitions. They are usually described in terms of multisets.

A multiset over a set S is a function M :S 7→ N; M is finite iff {s ∈
S:M(s) 6= 0} is finite. In the rest of this paper, multiset will always mean
finite multiset. M (S) denotes the set of finite multisets over S. 0, the empty
multiset, is the multiset such that 0(s) = 0 for all s ∈ S. The singleton
multiset of s ∈ S is the multiset over S with multiplicity 1 at s and 0
elsewhere. Addition of multisets is defined by (M +M ′)(s) = M(s) +M ′(s)
for all s ∈ S. The scalar multiplication nM , where n ∈ N, is defined by
(nM)(s) = n ·M(s) for all s ∈ S.

A Petri net is a structure N = 〈P, T, •(−), (−)•〉, where P and T are
sets such that P ∩ T = ∅ and P ∪ T 6= ∅, and •(−) and (−)• are functions
from T to M (P ). P is the set of places, T is the set of transitions, and
•t and t• are the pre and post multisets of t. A multiset over P is called a
marking. Markings may change as transitions fire. Given markings M and
M ′ and a multiset U over T (also called a step), we say that U may fire M ′

from M iff there is some marking M ′′ such that M =
∑

t∈T U(t)•t+M ′′ and
M ′′+

∑
t∈T U(t)t• = M ′. M R M ′ means that there is a step which may fire

M ′ from M . The reachability relation ⇒ is the reflexive transitive closure of
R. The downwards closure of M is defined by ↓M = {M ′ ∈ M (P ):M ′ ⇒
M}. Similarly, ↓H =

⋃
M∈H ↓M , where H ⊆ M (P ). Given a Petri net N ,

QN = {↓H:H ⊆M (P )}. A Petri net is atomic iff M ⇒ 0 implies 0⇒M for
any marking M . (A sufficient condition for atomicity is that every transition
has a nonempty post multiset.)
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6 Linear Logic with Petri Net Semantics

Engberg and Winskel have described a slightly non-standard variant of linear
logic which can be completely interpreted in terms of atomic Petri nets [10].
Bringing their notation in line with ours, their system LL[EW] may be
described as follows.

6.1 Syntax

The set of well-formed formulas WFF is defined by

A ::= 1|T|F|a|A⊗ A|A→ A|A ∧ A|∨i∈I Ai,

where a ranges over a countable set of atomic assertions AT and I over
countable indexing sets drawn from ω.

∨
is countable additive disjunction,

with unit F. Note that ¬ is absent.

6.2 Definitions

1.
⊗{A1, . . . , An} = A1 ⊗ . . .⊗ An

2. An =

n︷ ︸︸ ︷
A⊗ . . .⊗ A

3. A1 ∨ A2 =
∨
i∈{1,2} Ai

4. A↔ B = (A→ B) ∧ (B → A)

5. !A = A ∧ 1

6. ¬A = !A→ F

7. M̂ =
⊗

M(a)6=0 a
M(a), where M ∈M (AT)

‘!’ is pronounced as ‘of course’. This operator expresses the unlimited avail-
ability of a resource. An expression of the form M̂ , where M ∈ M (AT), is
called a marking assertion.

6.3 Semantics

A Petri net valuation for WFF is a structure V = 〈N, 〉, where N is a
countable atomic Petri net and the naming function is a mapping from AT
onto the set of singleton multisets of P . Given V , the denotation function
[ ]V : WFF 7→ QN is defined as follows:
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1. [1]V = ↓0

2. [T]V = M (P )

3. [F]V = ∅

4. [a]V = ↓a

5. [A⊗B]V = {M ∈M (P ): ∃M ′ ∈ [A]V ,M
′′ ∈ [B]V .M ⇒M ′ +M ′′}

6. [A→ B]V = {M ∈M (P ): ∀M ′ ∈ [A]V .M +M ′ ∈ [B]V }

7. [A ∧B]V = [A]V ∩ [B]V

8. [
∨
i∈I Ai]V =

⋃
i∈I [Ai]V

[A]V may be regarded as the set of conditions (markings) which may establish
A. Thus, M may establish A⊗B iff M may establish some condition which
may establish A plus some condition which may establish B. M may establish
A → B iff M in addition to any condition which may establish A may
establish B. M may establish A ∧B iff M may establish both A and B. M
may establish

∨
i∈I Ai iff M may establish some Ai, i ∈ I.

Definitions

1. A �V B iff [A]V ⊆ [B]V

2. �V A (V satisfies A) iff 1 �V A

3. � A (A is valid) iff �V A for all V

4. For M ∈ M (AT), M = the M ′ ∈ M (P ) such that, for all p ∈ P ,
M ′(p) =

∑
a=pM(a)

Observations

1. �V A iff 0 ∈ [A]V

2. �V A→ B iff [A]V ⊆ [B]V

3. [¬A]V =

{
∅ if �V A
M (P ) otherwise

4. �V ¬A iff 2V A

5. A→ ¬¬A is valid, whereas ¬¬A→ A is not
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Structural rules

A ` A
Γ ` A ∆, A ` B

Γ,∆ ` B
Γ, A, B,∆ ` C
Γ, B, A,∆ ` C

Logical rules
Γ ` A ∆ ` B
Γ,∆ ` A⊗ B

Γ, A, B ` C
Γ, A⊗ B ` C

Γ ` A
Γ, 1 ` A ` 1

Γ ` A Γ ` B
Γ ` A ∧ B

Γ, A ` C
Γ, A ∧ B ` C

Γ, B ` C
Γ, A ∧ B ` C

Γ ` Ai for some i ∈ I
Γ ` ∨i∈I Ai

Γ, Bi ` C for all i ∈ I
Γ,
∨
i∈I Bi ` C Γ ` T

Γ, A ` B
Γ ` A→ B

Γ ` A ∆, B ` C
Γ,∆, A→ B ` C Γ, F ` A

Axioms specific to atomic nets
(
∨
i∈I Ai) ∧B ` ∨

i∈I(Ai ∧B)
` A ∨ ¬A

A ` ∨
M∈M (AT)(M̂ ⊗ !(M̂→A))

M̂→∨i∈I Ai `
∨
i∈I(M̂→Ai)

Table 2: System LL[EW]

6. M ⇒M ′ iff �V M̂ → M̂ ′, whereas M 6⇒M ′ iff �V ¬(M̂ → M̂ ′)

Observation 5 shows that LL[EW] is different from LL, in which ¬¬A→ A
is an axiom. Observation 6 shows that both reachability and non-reachability
are expressible within the language.

6.4 Proof System

Proof system LL[EW] is displayed in table 2 (p. 10). Γ and ∆ are multisets
of assertions. It can be proven that ` A iff � A [10].

7 Deontic Linear Logic with Petri Net Se-

mantics

7.1 Basic Definition

Deontic system DLL[EW] is identical with LL[EW] except that the lan-
guage contains a constant assertion δ and the definitions SA = A → δ and
OA = δ → A.
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[a]V = {a} [b]V = {a, b} [c]V = {a, c}
[δ]V = {2a, a+b, a+c, b+c, δ} [b⊗ c]V = [δ]V \ {δ} [b ∧ c]V = {a}
[b ∨ c]V = {a, b, c} [a→ δ]V = {a, b, c} [a2]V = {2a}
[e]V = {e} [f ]V = {f} [g]V = {e, f , g}
[e⊗ f ]V = [δ]V ∪ {e+f} [e ∧ f ]V = ∅ [e ∨ f ]V = {e, f}
[δ → g]V = ∅ [g2]V = [δ]V ∪ {p+q: p, q ∈ {e, f , g}}

�V ¬Sa �V ¬Sb �V ¬Sc
�V Sδ �V S(b⊗ c) �V ¬S(b ∧ c)
�V ¬S(b ∨ c) �V ¬SSa �V S(a2)
�V Oδ �V ¬Oe �V ¬Of
�V ¬Og �V O(e⊗ f) �V ¬O(e ∧ f)
�V ¬O(e ∨ f) �V ¬OOg �V O(g2)

Figure 1: Sample deontic Petri net valuation

It may be noticed that �V SA iff [A]V ⊆ [δ]V and that �V OA iff [δ]V ⊆
[A]V . Thus, A is permitted iff any condition which may establish A may
establish δ; A is obligatory iff the converse holds.

It may also be noticed that if A and δ are marking assertions, i.e., A = M̂A

and δ = M̂δ, then �V SA iff MA ⇒Mδ and �V OA iff Mδ ⇒MA. Thus, A is
permitted iff the desirable marking is reachable from the marking named by
A. A is obligatory iff the converse holds. The former condition is intuitively
attractive, the latter perhaps less so.

7.2 An Example

Figure 1 (p. 11) illustrates the semantics. Places are represented by circles,
transitions by squares, and pre and post multisets by arcs of the appropriate
multiplicities. It is assumed that AT = {a, b, c, δ, e, f, g}.
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7.3 Other Deontic Notions

The concepts of strong prohibition, strong obligation, weak prohibition and
weak permission are problematical within the present framework. The cor-
responding operators could be defined in the same way as before (section 3),
but this would have some unfortunate consequences. The following formulas
would, for example, be valid:

1. FSA↔ (FSA⊗ FSA)

2. OSA↔ OS(A⊗ A)

3. FA↔ F (A⊗ A)

4. PA↔ (PA⊗ PA)

Thus, some paradoxes of deontic accumulation would reappear. Such desir-
able formulas as ¬FSA → SA and ¬PA → FA would, on the other hand,
be invalid. The classical negation operator of DLL does not lead to these
difficulties, but it cannot easily be interpreted in terms of Petri nets. ‘Can-
cellative linear logic’ with its ‘financial token games’, in which there are not
only resources but also debts, may offer a way out of this impasse, but this
system has not yet been studied in sufficient detail [21].

7.4 Comparison of DLL[EW] with Other Deontic Sys-
tems

Table 1 still holds if DLL is replaced by DLL[EW].

8 Conclusions

The linear logic cum Petri net approach towards deontic logic has several
interesting features.

• It avoids some of the paradoxes—notably the paradoxes of cumulative
permissions and obligations—which plague relevant and modal deontic
logic.

• In contrast with the algebraic, geometric and possible worlds seman-
tics of the latter systems—which are only of academic interest—the
semantics of the last system we have presented are related to mod-
elling techniques which have proven to be useful in practice.
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• Because our approach is based on linear logic and Petri nets, it will look
less unfamiliar to computer scientists than any of the systems which
have thus far been recommended to them (see, e.g., [23]).

This is not to say that the particular system we have discussed is com-
pletely satisfactory. Certain problems were already noted in the previous
section; it would, on the other hand, be interesting to add names for transi-
tions, steps and sequences of steps to the language and to strive after some
kind of integration with the results obtained by Linz [18]. Further work on
deontic linear logic is therefore desirable.
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Noûs, 1:345–360, 1967.

[3] Alan Ross Anderson. A new square of opposition: Eubouliatic logic. In
Akten des XIV. Internationalen Kongresses für Philosophie, vol. 2, pp. 271–
284. Herder, Vienna, 1968.

[4] Alan Ross Anderson & Nuel D. Belnap, Jr. Entailment: The Logic of
Relevance and Necessity, vol. 1. Princeton University Press, Princeton, N. J.,
1975.

[5] Alan Ross Anderson, Nuel D. Belnap, Jr., & J. Michael Dunn. En-
tailment: The Logic of Relevance and Necessity, vol. 2. Princeton University
Press, Princeton, N. J., 1992.
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