
GEttT-JAN C. LOKItORST Reasoning About
Actions and Obligations
in First-Order Logic*

A b s t r a c t . We describe a new way in which theories about the deontic status of actions
can be represented in terms of the standard two-sorted first-order extensional predicate
calculus. Some of the resulting formal theories are easy to implement in Prolog; one

prototype implementat ion--R. M. Lee's deontic expert shell DX--is briefly described.

Key words: deontic logic, logic of action.

1. I n t r o d u c t i o n

We shall describe a new way in which theories about the deontic status of
actions can be represented in terms of the standard two-sorted first-order
extensional predicate calculus. This approach towards the formal analysis
of such theories has two attractive features: first, it stands in the long and
venerable 'anti-intensional' or 'anti-modal' tradition in the logic of action
[11, 3, 7] and deontic logic [17, 15, 16]; and second, it leads to formal theories
which are sometimes easy to implement in Prolog. Our analysis is preferable
over previous proposals because it is both simpler and more comprehensive.

We shall first show how sentences about the deontic status of actions can
be represented in the language of the first-order predicate calculus. We shall
then give a brief description of Ronald M. Lee's deontic expert system DX
which is based on these ideas. 1 We shall finally propose some extensions of
the system. It will emerge that a considerable part of the currently popular
'modal ' account of the deontic logic of action can be embedded in these--still
purely first-order--extensions of the original system.

2. B a s i c R e p r e s e n t a t i o n a l I s s u e s

2 .1 . F a c t s

It is customary to distinguish between three types of facts: events, processes
and states of affairs [18, ch. II.5]. The difference between these types of

*This research was partially supported by the ESPRIT III Basic Research Working
Group No. 8319 MODELAGE.

aThe historical sequence of events is just tile reverse: our systems were originally in-
spired by Lee's DX.

Studia Logica 57: 221-237, 1996.
�9 1996 Kluwer Academic Publishers. Printed in the Netherlands.

222 G. J. C. Lokhorst

facts is, roughly, this: events happen at a certain time, whereas processes
and states of affairs have a certain duration; processes are 'dynamic ' , whereas
states of affairs are 'static' . Events occur; processes go on; states of affairs
obtain.

Facts can be described by means of sentences as well as named by means
of singular terms. ~ The sentence 'Job is poor ' is an example of a description
of a fact; it can be represented by means of a formula of the form F(a),
where F is a monadic predicate symbol, standing for 'is poor ' , and a an
individual constant, standing for 'Job'. 'Job's poverty ' , on the other hand,
is a name of a fact; it can be represented by means of a singular te rm of the
form f (a) , where f is a monadic function symbol, standing for ' the poverty
of' , and a an individual constant, standing for 'Job'.

2 .2 . A c t i o n s

Corresponding to the just-mentioned three types of facts, there are three
types of actions: acts, activities and states of activity [18, ch. III.2]. Acts
are events: 3 they occur at a certain time. Activities are processes: they go
on over a certain period of time. States of activity are states of affairs: they
obtain during a certain period.

Just like events, processes and states of affairs, acts, activities and states
of activity can be represented in two ways: by means of sentences and by
means of singular terms. 'God is bringing about Job's pover ty ' is an ex-
ample of an action sentence. It can be represented by a formula of the
form Eft(g, f (a)) , where the binary predicate symbol Eft stands for 'brings
about ' , the individual constant g for 'God' and the singular t e rm f (a) for
'Job's poverty' . 'God's bringing about Job's poverty ' , on the other hand, is
an example of an action term. It can be represented by a singular t e rm of
the form eft(g, f (a)) , where the binary function symbol eft stands for ' 's
bringing about o f . . . ' , and the terms g and f (a) have the same meaning as
before.

Each action has an agent and an effect (result, outcome, post-condition),
so all English action sentences and action terms can be represented by
constructions of the forans Eft(x,y) and eff(x,y) . The effect of an action
may again be an action, so one may come across constructions such as
Eft(x, elf(y, f(z))) and eft(x, eft(y, f(z))).

2This was stressed by Reichenbach [11, w whose own analysis was, however, different
from ours, as will become clear below.

3See [3, p. 113] contra [18].

Reasoning about actions... 223

2 .3 . D e o n t i c S t a t u s

Some events , processes and states of affairs (including actions, activities
and states of activity) have deontic status: they are forbidden, obligatory,
pe rmi t t ed , or waived (i.e., not obligatory). The deontic s tatus of events,
processes and states of affairs may be represented by means of predicate
symbols whose a rguments are singular terms. An example: 'God 's bringing
about Job's pover ty is pe rmi t ted ' (or 'God is allowed to make Job poor ') may
be represented as Pe tm(ef f (g , f (a))) , where the monadic predicate symbol
Perm stands for 'is permi t ted ' .

Von Wright seems to have been the first philosopher who analyzed deontic
concepts by means of deontic predicate symbols [17]. He later abandoned this
approach [18], but others have made it clear tha t it is still worth exploring
[9, 14, 15, 16].

3. T h e L o g i c a l S y s t e m D A

Let us now make these ideas more precise and explicit. The first deontic
act ion logic which we shall present is basically the same as s tandard two-
sor ted first-order predicate logic except that some symbols are in terpre ted in
special ways. Let us first give a brief recapitulation of s tandard two-sorted
first-order logic with two basic sorts, 0 and 1.

3.1. T h e L a n g u a g e (LA)

The list of pr imit ive symbols is as follows:

1. individual variables of sort 0: x, y, . . . ;

2. individual constants of sort 0: a, b ;

3. individual variables of sort 1: X, ~, ---;

4. individual constants of sort 1: a , fl, . . . ;

.

.

for every n > 1, every string a C {0, 1}* of length n (where , is the
Kleene star) and every sort r E {0, 1}, a denumerable sequence of
n-ary funct ion symbols of sort a ~ T: f ~ T , f ~ - , . . . ;

for every n > 1 and every string a E {0, 1}* of length n, a denumerable
sequence of n-ary predicate symbols of sort a: F~, F~, . . . ;

7. connectives: -1, A;

224 G. J. C. Lokhorst

8. quantifier: V;

9. punctuat ion symbols: ',', ' (' , ')'.

The superscripts of the function symbols and predicate symbols will some-
times be omitted.

The notions ' term' , 'atomic formula' and ' formula' are inductively defined
as follows:

1. all individual constants and variables of sort 0. are terms of sort a;

2. if f is an n-ary function symbol of sort am �9 �9 �9 0-n ~ 0.n+l and t l , �9 �9 t~
are terms of sorts 0-1, . . . , 0.,~, respectively, then f (t l , . . . , tn) is a term
of sort 0.n+ 1;

3. if F is an n-ary predicate symbol of sort 0-1 ""0-n and t l , . . . , t~ are
terms of sorts 0-1, . . . , o-n, respectively, then F (t l , . . . , t~) is an atomic
formula;

4. M1 atomic formulas are formulas;

5. if r and ~b are formu]as and v is a variable, then -,r r A r and Vvr

are formulas.

V, 4 , ~ , _1_, T and 3 are defined as usual. A Horn clause is a universally
quantified formula of the form (r A . . . A Cn) ~ r where r . . . , r
are atomic formulas.

3 .2 . F o r m a l S e m a n t i c s

A model for DA is a s tructure

!~l = (D0, D1, V),

where Do and D1 are non-empty sets and V is a function such that :

1. V(t) E D , for each term t of sort 0.;

2. V (f) is a mapping from D~, • . . . • Da , to Dg,+~ for each n-ary
function symbol f of sort 0.1""0.n ~ 0"n+1;

3. V (F) C_ D ~ • " " • D~.~ for each n-ary predicate symbol F of sort

0"1 " ' ' 0 "n .

!Yl [= r means that r is true in _r This notion is defined as follows:

Reasoning about actions... 225

2. 1=

F(tl , . . . , tn) iff (V (t l) , . . . , V(tn)) E V(F);

iff V: r

r iffg~t 1= ~b and ~ l= ~b;

4. ~ [= Vvr iff ~O1(d/v) I--- r for all d E D~, where v is a variable of sort
a, and where 9)t(d/v) is the model which is identical to 9Jr except that
V(v)=d.

~, 9)l ~ r means that if 9)t]= r for all r E ~, then 9Jr [= r ~]= r means
that ~, 9Jr ~ r for all models 9~.

3 . 3 . A x i o m a t i z a t i o n

Axiom schemes:

(DA1) all truth-functional tautologies;

(DA2) Vvr ~ r where t is free for v in r provided that v and t
are of the same sort.

Rule schemes (where t- r means that r is a theorem):

(DAR1) if ~- r and ~- r ~ r then t- ~p;

(DAR2) if t- r ~ r then F- r ~ Vv~b, provided that v is not free in r

E t- r means that r is derivable from E, a notion which is defined as usual.

3 .4. S o u n d n e s s a n d C o m p l e t e n e s s

E ~ - r ~ E l = r See, e.g., [4, ch. 8].

3 .5. I n f o r m a l I n t e r p r e t a t i o n

Sort 0 will be regarded as the category of individual objects (including
agents), sort 1 as the category of individual events, processes and states
of affairs (including acts, activities and states of activity). All entities in
the latter class will be called 'events' for the sake of brevity. Thus, individ-
ual variables of sorts 0 and 1 are individual object variables and individual
event variables, repectively; individual constants of sorts 0 and 1 are indi-
vidual object constants and individual event constants, respectively; and the
sets Do and D1 (in the formal semantics) are the sets of individual objects
and individual events, respectively.

226 G. J. C. Lokhorst

3.6. D e s i g n a t e d S y m b o l s

The following predicate sylnbols and function symbols are notated and in-
terpreted in special ways.

Symbol
Fr

r l
rl 0,

Meaning
is forbidden
is obligatory
is permitted
is waived
brings about

Notation
Forb
Obl
Perm
Waiv
Eft

Symbol

f l ~ l
flO 1~-~1

Meaning
being forbidden
being obligatory
being permitted
being waived
bringing about

Notation
forb
obl
perm
waiv
eft

Note that, in all these cases, f [~ l represents the gerund of the predicate
expressed by F j . We shall adopt the following important interpretational
convention:

[f [~ l represents tile gerund of the predicate expressed by F/~]

3.7. E x a m p l e s of T e r m s a n d F o r m u l a s

In the following examples, copier is a constant of sort 0 and empl a function
symbol of sort 0 ~ 1.

1. Eft(a, empl(copier)) ['a brings about the employment of the copier', 'a
uses the copier'];

2. elf(a, empl(copier)) ['a's [bringing about the] employment of the copier'];

3. Perm(eft(a, empl(copier))) ['a is allowed to use the copier'];

4. Perm(eft(a, perm(eft(b, empl(copier))))) ['a is permitted to permit b to
use the copier'];

5. Eft(a, elf(b, a)) ['a makes b do a'].

Note that Forb, Obl, Perm, Waiv and Eft cannot occur within the scope of
Forb, Obl, Perm, Waiv and Eft. Forb, Obl, Perm, Waiv and Eft are predicate
symbols; only terms can occur in their range. These terms may, of course,
contain function symbols, such as eft and perm in the last two examples.

Reasoning about actions. . . 227

3.8. D e f i n e d O p e r a t o r s

1. [F/~(tl,.. . ,t~)]* a=f f [~ l (t l , . " .,t,~);4

2. F(r af Forb([r

3. O(r df Obl([r

4. P(r df Perm([r

5. w(r

6. E(t, r af Eft(t, [r

An example:

P(E(a, Empl(copier))) = Perm([E(a, Empl(copier))]*)

= Perm([Eff(a, [Empl(copier)]*)]*)

= Perm(eff(a, empl(copier))).

Note that F, O, P, W and E may occur within the scope of F, O, P, W and
E.

Von Wright abandoned the first-order approach to deontic logic because
he could not imagine how nested prohibitions, obligations, permissions and
waivers could ever be handled in it [18, Preface]. The just-presented defini-
tions suggest that he abandoned hope too early. Nested deontic construc-
tions can be made sense of after all.

3.9. D X : A P a r t i a l h - n p l e m e n t a t i o n of D A

The logical system DA is purely first-order, so the standard techniques from
the field of logic programming can be applied. The fact that DA is two-
sorted is no obstacle to this [6]. Ronald M. Lee's deontic expert shell DX
is a partial implementation (written in Prolog) of the Horn clause fragment
of DA [5, 10, 12, 13]. When one takes a look at Lee's description of DX, it
is not immediately apparent tha~t this is the project he has carried out. He

4The []* nota t ion is taken from Reichenbach [11, p. 269]. However, Reichenbach
regarded [F~(f l t,0]* as a primitive predicate symbol (of sort 1, from our point of
view), whereas we regard it as a defined singular term (of sort 1). Reichenbach would
have wri t ten the la t ter te rm as (w)[F~(t~ , t,,)]*(v), where v is a variable of sort I (in
our terminology). An example may make this clearer. Let F~ s tand for 'George VI is
crowned' . We represent ' the coronation of George VI' as [F~ *, which is by definition
equivalent with f 0 ~ (x), whereas Reichenbach (ibid.) represented it as (w) [F ~

228 G. J. C. Lokhors t

gives the following Backus-Naur definition of his language, which we shah
call LX [5, p. 11]:

<rule> ::= <condition>

<rule> ::= if <conditions> then <condition>

<rule> ::= <condition> if <conditions>

<conditions> ::= <condition>

<conditions> ::= <condition> and <conditions>

<condition> ::= <predicate>

<condition> ::= forbid(<action>)

<condiZion> ::= oblig(<action>)

<condition> ::= permit(<action>)

<condition> ::= waiv(<action>)

<action> ::= <agent>:<condition>

Lee's terminology is different fl'om ours. Things fall into place as soon as
the following translation table is used.

LX
forbid
oblig
permit
waiv
: (inf ix)
<predicate>
<condition>

<action>
<conditions>
<rule>

LA
F
0
P
W
E (prefix)
atomic formula
atomic formula or formula of one of the following forms:
F(r O(r P(r W(r where r is an <ac t ion>
formula of the tbrln E(t, r where r is a <cond i t i on>
conjunction of <condi t ion>s and <act ion>s
Horn clause

The following formula is an example of a rule in Lee's sense:

permit(X: permit(Y: use-copier)) if chair(X).

This corresponds to the following formula of LA:

VxVy (Chair(x) -~ e(E(x, P(E(y, s

It will be clear that all formulas of LX can be translated into LA. The
converse does not hold:

�9 LA-formulas of the ibrms F(r O(r P(r and W(r cannot be trans-
lated into LX unless r is an action sentence, i.e., unless r of the form
E(t, r (this is Lee's way of doing justice to the ' Tunsol len rather than
Se inso l len ' thesis from classicM ethics);

Reasoning about actions... 229

�9 LA-formulas of the form E(t , r cannot be translated into LX if r is
itself an action sentence, i.e., if r is of the form E(t', r

These differences between LX and LA disappear if the last five lines of Lee's
definition are replaced by the following ones:

<condition> : := forbid(<condition>)

<condition> ::= oblig(<condition>)

<condition> ::= permit(<condition>)

<condition> : := waiv(<condition>)

<condition> : : = <agent> : <condit ion>

4. T h e L o g i c a l S y s t e m D B

4.1. Limitations of DA

DA has a major shortcoming: complex actions and obligations cannot be
represented in it. 5 Some examples:

1. a's doing non-a;

2. a's doing a or ~;

3. a's not doing a is obligatory (it is obligatory that a does not do a);

4. a's doing fl upon doing a is obligatory (it is obligatory that if a does
a, he does fl).

The solution is simple: following Segerberg [15], we enrich the language with
Boolean operators. 6

4.2. The Language (LB)

LB is the same as LA, except that:

1. The following special symbols are added:

(a) two designated individual constants of sort 1 :0 and 1; the former
represents the empty (impossible) event, the latter the universal
(necessary) event;

SReichenbach's work had the same shortcoming; he did not pay attention to complex
events.

6There are several differences between our account and Segerberg's. (1) Segerberg
considered only one sort of singular terms, namely event-ternls. (2) He did not consider
quantification over events, although he did use open formulas with event-variables which
were implicitly regarded as being universally quantified. (3) Forb and Perm were taken
a s the primitive deontic predicates.

230 G. J. C. Lokhorst

(b) a designated flmction symbol of sort 1 ~-~ 1: -; this symbol is read
as 'not ' , 'non', or ' the conlp]ement of';

(c) two designated function symbols of sort 11 ~ 1: Iq and I.J; these
symbols are read as 'and' and 'or', or as ' the intersection of' and
' the union of', respectively;

(d) a designated predicate symbol of sort 11: '= ' ; this symbol is read
as 'is identical with'.

2. Obl and obl are the only primitive deontic symbols; the other deontic
symbols are defined as follows:

(a) Forb(t) d=f Obl(7);

(b) Perm(t) __af -~Forb(t);

(c) waiv(t)

(d) forb(t) d=f obl(7);

(e) perm(t) forb(t);

(f) waiv(t) a f obl(t).

Note that only the second and third definitions are stateable in LA.

Some examples of terms and formulas (cL w

1. e f f (a ,~) [' a ' s doing non-a'];

2. eft(a, a LI/~) ['a's doing a or fl'];

3. Obl(eft(a,a)) ['a's not doing a is obligatory'];

4. 0bl(eft(a, a) LJ elf(a, fl)) ['a's doing/3 upon doing a is obligatory'].

4 .3 . F o r m a l S e m a n t i c s

A model for DB is a structure

9J1 = (Do, B ,V) ,

where Do is a non-empty set, B = (D1,_0,1, - , N, U) is a Boolean algebra,
and V is a function which satisfies the following conditions in addition to
those which were already mentioned in the definition of the DA-models:

1. v (0) = 9_;

Reasoning about actions... 231

2. V(1)= i;

a. v (~) = - v (t) ;

4. Y(h n t2)= y(t l)N v(t2);

5. v (t , u t~) = v (t o u v(t~);

6. V (=) = {(d,d> : d e D,}.

Note that D1 may be regarded as the power-set of the set D1 in our previous
models. V may accordingly be regarded as an assignment of sets of events
(rather than single events) to event-terms.

4.4. A x i o m a t i z a t i o n

The following axiom schemes are to be added to the axiom schemes of DA:

(DB1)

(DB2)

(DB3)

(DB4)

(DB5)

(DB6)

(DB7)

X=X;

x = f ~ (r ~ r where Co(fix) is a formula which arises
from r by replacing some free occurrences of X by f and f is free
for the occurrences of X that it replaces;

xnf=fnx, xU~=fux;

xn (fuO = (xn f) u(xn O,xu (fn ~) = (xuf) n (xUO;

X 01 =X,X UO=X;

x n ~ = O, xU~ = i;

0 # 1 .

The rule schemes are as before.

4.5. S o u n d n e s s a n d C o m p l e t e n e s s

E F r r E I= r Proof: similar to the proof in [15].

4.6. I m p l e m e n t a b i l i t y

We have not yet studied the implementability of (useful fragments of) DB.
The new axiom schemes give rise to various complications, depending as
they do on both the identity symbol [6, w and the complementation oper-
ator, which has the same computationally troublesome properties as classicM
logical negation.

232 G. d. C. Lokhorst

4.7. D e f i n e d O p e r a t o r s

The following definitions are to be added to those in w

1. [-1r a2 [r

2. [r ^ r d2 [r n [r

Note that [Vxr is not defined. We shall also assume that [tl = t2]* is not
defined. Some examples of formulas:

1. O(~E(a, r ['it is obligatory that a does not do r

2. O(E(a, r ~ E(a, ~b)) ['it is obligatory that if a brings it about that r
then he brings it about that ~b'].

4 .8 . D e r i v e d R u l e s of I n f e r e n c e

(DBR1) F p c r 1 6 2 ~ F D B [r 1 6 2

Here Fpc r means that r is a theorem of the propositional calculus. This rule
scheme is a consequence of the correspondence between Boolean algebra and
propositional logic; see, e.g., [8, w Since r and r contain no quantifiers
and no occurrences of '= ' ([r and [r would not be defined otherwise),
and we clearly have FDB r ~ ~P ~ Fpc r ~ r provided that r and r
contain no quantifiers and no occurrences of '= ' , we may also, more simply,
write:

(DBR2) F r ~ r ~ F [r = [r

The following rule schemes are derivable fl'om the latter scheme:

(DBR3) F r ~ r ~ F O(r ,--, 0 (r

(DBR4) F r ~ r ~ F E(x,r ~ E(x,~b).

It is to be noted that (r ~ r ~ [r = [r is not a theorem. This has an
important consequence: Davidson's celebrated criticism [3, pp. 117-118] of
Reichenbach's proposals [1 l, w is completely unjustified (cf. w below).

Reasoning about actions... 233

4.9. E x p r e s s i v e L i m i t a t i o n s

A (partially) de dicto obligation such as 'everybody ought to love some-
body someday' (free after Dean Martin) cannot be represented in LB. This
sentence is representable as

VxO(3y3dLoves(x, y, d))

in standard deontic logic [1]. The latter formula does, however, not belong
to LB. It remains to be seen whether this is a serious limitation. Suppose,
for example, that there is only a finite number of people hi, . . . , h~ and that
each man or woman hi has only a finite number of days ,(i) , . . . , t(i) on
which he or she can love somebody. (Neither assumption is unrealistic.) The
sentence can then be represented by the following LB-formula:

A 0 (V V Loves(hi, hk, d)).
l < i < n l < k < n ,(i)<d<t(i)

5. F r o m D B to S t a n d a r d D e o n t i c Logic a n d B e y o n d

5.1. System DC

DC has the following axiom schemes in addition to those of DB:

(DC1)

(DC2)

(DC3)

(DC4)

(DC5)

(DC6)

(DC7)

(DC8)

Obl(1);

Obl(x n ,9 ~ (Obl(x)/x Obl ({)) ;

Eft(x, 1);

Eft(x,X n ~) ~ (Eft(x,x)A Eff(x,~));
obl(1) = 1;

obt(x n ~) = obl(x) n obl(~);

eft(x, 1) ---- 1;

el f (x , x n ,,) = elf (x, x) n el f (x, {).

The corresponding semantic conditions are straightforward. Note that
(DC1)-(DC4) correspond to the condition that V(0bl) and {e : (d,e) e
Y(Eff)} are filters on B.

The following formulas are derivable from (DC1)-(DC4):

1. O(T);

2. o (r A r ~ (0 (r ^ 0(~)) ;

234 G. J. C. Lokhorst

3. E(z, T);

4. E(x, r A r ~ (E(x, r A E(x, r

Axioms (DCh)- (DC8) ensure that DC is closed under (DBR1) and hence
under (DBR3) and (DBR4).

A sentential operator [] is known as a normal modal operator in sys tem
E iff the following principles hold:

1. t-~ C:](T);

2. FE [](r A "q~) ~ ([](r A []('~));

3. e~ r ~ r ~ ~ [](r ~ [](r

It will be Clear tha t 0 and E are normal modal operators in DC, just fike 0
in s t andard deontic logic [1] and A ('sees to it tha t ' , 'brings it about tha t ')
in Chellas's logic of action [2].

5 .2 . S y s t e m D D

One feature of DC is unsatisfactory: there is no clear logical relat ionship
between r and [r We remove this defect with the help of a predicate
symbol Occ of sort 1. Occ(a) is read as ' a occurs ' (in case a is an event) ,
' a goes on ' (in case a is a process) or ' a obtains ' (in case a is a s tate) , occ
is the corresponding function symbol of sort 1 ~ 1. System DD has the
following axiom schemes in addition to those of DC:

(DD1) r +-, 0cc([r 7

(DD2) X = occ(x).

The corresponding semantic conditions are s traightforward. Axiom (DD2)
ensures tha t DD is closed under (DBP~I) and hence under (DBR3) and
(DBR4).

5.3. S y s t e m DE

Standard deontic logic (SDL) has the following axiom scheme:

(D) ~O(•

Furthermore, most authors (e.g., Chellas [2]) adopt the following axiom
scheme for the action operator E:

Z(DD1) is similar to Reichenbach's r ~-* (3v)[4]*(v) [11, p. 271 (9)]; cf. note 4.

Reasoning about actions... 235

(E) E(z, r ~ r

These formulas become derivable if the following axiom schemes are added
to the axiom schemes of DD:

(DE1) -~Obl(0);

(DE2) E f f (x , x) ~ 0cc(x);

(DE3) obl(0) = 0;

(DE4) eff(x,x) E X.

The corresponding semantic conditions are straightforward. Note that (DE1)
corresponds to the condition that V(Obl) is a proper filter on B. Axioms
(DE3) and (DE4)ensure that DE is closed under (DBR1) and hence under
(DBR3) and (DBR4).

The following metatheorems can now be proven:

(*) [-SDL q~ if[[-DE ~, provided that r belongs to the languages of both DE
and quantified SDL;

(**) [-CLA ~ il~ [-DE q~, provided that r belongs to the languages of both
DE and quantified CLA, where CLA is Chellas's logic of action.

In other words, we have now covered tt{e whole route from DX towards the
standard modal account of deontic logic and the logic of action.

5.4. S y s t e m D F

We may go even further: if we add the axiom scheme

(DF) (F~(x l , . . . , x,~) ~ F~(xl , . . . , x,,))

f [~ ' (x l , . . . , x ~) = f[.~l(xl , . . . ,x~)

to DE in order to obtain system DF, we may prove such theorems as the
following ones:

1. (r *-* 3b) ~ [r = [~b]* (proof: by induction);

2. (r ~ r ~ (o (r ~ o (~)) ;

3. (r ~ 0) -~ (E(x, r ~ E(x, ~)).

In other words, we get a purely extensional deontic logic of action.
(Note, however, that 0 and E are, though extensional, definitely not truth-
functional.) Since nobody would want such an excessively strong system
(Davidson's criticism [3, pp. 117-118] of [11, w would apply to it), we
mention DF only for the sake of curiosity.

236 G. J. C. Lokhorst

5.5. I m p l e m e n t a b i l i t y

The remarks made in w apply here as well. Observations (*) and (**)
suggest that DE is in the same boat as de re quantified SDL and CLA
as far as implementational issues are concerned. So the implementational
advantages which we seemed to have in the case of DA are quickly lost once
the latter system is made more 'orthodox'.

6. C o n c l u s i o n

Our enterprise started off as an investigation into the logical foundations
of Lee's expert system DX. Although DX is rooted in the tradition of logic
programming, its logical import was unclear at first sight. Uncovering the
logical content of DX was not only an interesting puzzle: since DX is typical
of much work in AI, our results may well be applicable in a wider domain.

As soon as the logical content of DX was clarified, DX turned out to be
inadequate. Systems DB-DE demonstrate what has to be added in order to
let DA/DX qualify as a full-fledged deontic logic of action. It is conceivable
that similar expert systems in AI will have to be extended in analogous ways.

We think that it is important that further work is carried out along the
lines we have sketched. Since there is a growing need for deontic expert
systems, such work is not only of academic interest: Society is waiting for
US.

References

[1] AQVlST, L., 1984, 'Deontic logic', In D. Gabbay and F. Giinthner, editors, Hand-
book of Philosophical Logic, Vol. I1: Extensions o] Classical Logic, 605-714, Reidel,
Dordrecht.

[2] CItELLAS, B. F., 1992, 'Time and modality in the logic of agency', Studia Logica 51,
485-517.

[3] DAVIDSON, D., 1980, Essays on Actions and Events, chapter The Logical Form of
Action Sentences (1967), 105-122. Clarendon Press, Oxford.

[4] HUGItES, G. E., and M. J. CRESSWELL, 1968, An Introduction to Modal Logic,
Methuen, London.

[5] LEE, R. M., 1992, DX: A deontic expert system. Working Paper 1992.10.01, Eras-
mus University Research Institute for Decision and Information Systems (EURIDIS),
Rotterdam.

[6] LLOYD, J. W., 1987, Foundations of Logic Programming, second edition, Springer-
Verlag, Berlin.

Reasoning about actions... 237

[7] MARTIN, R. M., 1981, Logico-Linguistic Papers, chapter On the Analysis of Action
Sentences, 155-169. Foris, Dordrecht.

[8] MENDELSON, E., 1970, Boolean Algebra and Switching Circuits, McGraw-Hill, New
York.

[9] MEYER, 3. J. Clt., 1988, 'A different appro~Lch to deontic logic: Deontic logic viewed
as a variant of dynamic logic', Notre Dame Jourual o] Formal Logic 29, 109-136.

[10] ONG, K. L., and R. M. LEE, 1993, A formal modelfor maintaining consistency of
evolving bureaucratic policies: A logical and abductive approach. Research Monograph
1993.01.01, Erasmus University Research institute for Decision and Information Sys-
tems (EURIDIS), Rotterdam.

[11] REICItENBACII, H., 1947, Elements of Symbolic Logic, Macmillan, New York.

[12] RYU, Y. U., and R. M. LEE, 1992, Defeasible deontic reasoning and its applications to
normative systems. Working Paper 1992.07.01, Erasmus University Research Institute
for Decision and Information Systems (EURIDIS), Rotterdam.

[13] RYU, Y. U., and R. M. LEE, 1992, A fo,'mal representation of normative systems.
Research Monograph 1992.08.01, Erasmus University Research Institute for Decision
and Information Systems (EURIDIS), Rotterdam.

[14] ROYAKKERS, L. M. M., 1993, Predikatieve deontische logica. Master's thesis, Tech-
nische Universiteit, Eindhoven.

[15] SEGERBERG, K., 1982, 'A deontic logic of action', Studia Logica 41~ 269-282.

[16] SEGERBERG, K., 1984, 'A topological logic of action', Studia Logica 43, 415-419.

[17] VON WRIGtIT, C. n., 1951, 'Deontic logic', Mil~d 60, 1-15.

[18] VON WRIGHT, G. H., 1971, Norm and Action: A Logical Enquiry, Routledge and
Kegan Paul, London.

ERASMUS UNIVERSITY
RESEARCH INSTITUTE FOR DECISION
AND INFORMATION SYSTEMS (EURIDIS)
AND DEPARTMENT OF PHILOSOPHY,
ERASMUS UNIVERSITY, P.O. BOX 1738,
NL-3000 DR ROTTERDAM,
THE NETHERLANDS.
G.Lokhorst @euridis.fbk.eur .nl
Lokhorst @filint.fwb.eur.nl

Studia Logica 57, 1/2 (1996)

