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A b s t r a c t .  We describe a new way in which theories about the deontic status of actions 
can be represented in terms of the standard two-sorted first-order extensional predicate 
calculus. Some of the resulting formal theories are easy to implement in Prolog; one 

prototype implementat ion--R.  M. Lee's deontic expert shell DX--is briefly described. 
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1. I n t r o d u c t i o n  

We shall describe a new way in which theories about the deontic status of 
actions can be represented in terms of the standard two-sorted first-order 
extensional predicate calculus. This approach towards the formal analysis 
of such theories has two attractive features: first, it stands in the long and 
venerable 'anti-intensional'  or 'anti-modal'  tradition in the logic of action 
[11, 3, 7] and deontic logic [17, 15, 16]; and second, it leads to formal theories 
which are sometimes easy to implement in Prolog. Our analysis is preferable 
over previous proposals because it is both simpler and more comprehensive. 

We shall first show how sentences about the deontic status of actions can 
be represented in the language of the first-order predicate calculus. We shall 
then give a brief description of Ronald M. Lee's deontic expert system DX 
which is based on these ideas. 1 We shall finally propose some extensions of 
the system. It will emerge that  a considerable part of the currently popular 
'modal '  account of the deontic logic of action can be embedded in these--still  
purely first-order--extensions of the original system. 

2. B a s i c  R e p r e s e n t a t i o n a l  I s s u e s  

2 .1 .  F a c t s  

It is customary to distinguish between three types of facts: events, processes 
and states of affairs [18, ch. II.5]. The difference between these types of 

*This research was partially supported by the ESPRIT III Basic Research Working 
Group No. 8319 MODELAGE. 

aThe historical sequence of events is just tile reverse: our systems were originally in- 
spired by Lee's DX. 
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facts is, roughly, this: events happen at a certain time, whereas processes 
and states of affairs have a certain duration; processes are 'dynamic ' ,  whereas 
states of affairs are 'static' .  Events occur; processes go on; states of affairs 
obtain. 

Facts can be described by means of sentences as well as named by means 
of singular terms. ~ The sentence 'Job is poor '  is an example of a description 
of a fact; it can be represented by means of a formula of the form F(a), 
where F is a monadic predicate symbol, standing for 'is poor ' ,  and a an 
individual constant,  standing for 'Job'. 'Job's poverty ' ,  on the other  hand,  
is a name of a fact; it can be represented by means of a singular te rm of the 
form f (a) ,  where f is a monadic function symbol, standing for ' the poverty 
of' ,  and a an individual constant,  standing for 'Job'.  

2 .2 .  A c t i o n s  

Corresponding to the just-mentioned three types of facts, there are three 
types of actions: acts, activities and states of activity [18, ch. III.2]. Acts 
are events: 3 they occur at a certain time. Activities are processes: they go 
on over a certain period of time. States of activity are states of affairs: they 
obtain during a certain period. 

Just  like events, processes and states of affairs, acts, activities and states 
of activity can be represented in two ways: by means of sentences and by 
means of singular terms. 'God is bringing about Job's pover ty '  is an ex- 
ample of an action sentence. It can be represented by a formula of the 
form Eft(g, f (a)) ,  where the binary predicate symbol Eft stands for 'brings 
about ' ,  the individual constant g for 'God'  and the singular t e rm f (a)  for 
'Job's poverty' .  'God's bringing about Job's poverty ' ,  on the other  hand,  is 
an example of an action term. It can be represented by a singular t e rm of 
the form eft(g, f ( a ) ) ,  where the binary function symbol eft stands for ' 's 
bringing about o f . . . ' ,  and the terms g and f (a)  have the same meaning as 
before. 

Each action has an agent and an effect (result, outcome, post-condition),  
so all English action sentences and action terms can be represented by 
constructions of the forans Eft(x,y) and eff(x,y) .  The effect of an action 
may  again be an action, so one may come across constructions such as 
Eft(x, elf(y, f(z))) and eft(x, eft(y, f(z))). 

2This was stressed by Reichenbach [11, w whose own analysis was, however, different 
from ours, as will become clear below. 

3See [3, p. 113] contra [18]. 
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2 .3 .  D e o n t i c  S t a t u s  

Some events ,  processes and states of affairs (including actions, activities 
and states of activity) have deontic status: they are forbidden, obligatory, 
pe rmi t t ed ,  or waived (i.e., not obligatory). The  deontic s tatus of events,  
processes and states of affairs may be represented by means of predicate  
symbols whose a rguments  are singular terms. An example: 'God 's  bringing 
about  Job's  pover ty  is pe rmi t ted '  (or 'God is allowed to make Job poor ' )  may  
be represented as Pe tm(ef f (g , f (a ) ) ) ,  where the monadic  predicate symbol  
Perm stands for 'is permi t ted ' .  

Von Wright  seems to have been the first philosopher who analyzed deontic 
concepts  by means  of deontic predicate symbols [17]. He later abandoned this 
approach  [18], but  others have made  it clear tha t  it is still worth exploring 
[9, 14, 15, 16]. 

3.  T h e  L o g i c a l  S y s t e m  D A  

Let us now make  these ideas more precise and explicit. The  first deontic 
act ion logic which we shall present is basically the same as s tandard  two- 
sor ted first-order predicate  logic except that  some symbols are in terpre ted in 
special ways. Let us first give a brief recapitulation of s tandard  two-sorted 
first-order logic with two basic sorts, 0 and 1. 

3.1.  T h e  L a n g u a g e  (LA) 

The  list of pr imit ive symbols is as follows: 

1. individual  variables of sort 0: x, y, . . . ;  

2. individual  constants  of sort 0: a, b . . . .  ; 

3. individual  variables of sort 1: X, ~, ---; 

4. individual  constants  of sort 1: a ,  fl, . . . ;  

. 

. 

for every n > 1, every string a C {0, 1}* of length n (where , is the 
Kleene star)  and every sort r E {0, 1}, a denumerable  sequence of 
n-ary funct ion symbols of sort a ~ T: f ~ T ,  f ~ - ,  . . . ;  

for every n > 1 and every string a E {0, 1}* of length n, a denumerable  
sequence of n-ary predicate symbols of sort a: F~, F~,  . . . ;  

7. connectives: -1, A; 
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8. quantifier: V; 

9. punctuat ion symbols: ',', ' ( ' ,  ')'. 

The superscripts of the function symbols and predicate symbols  will some- 
times be omitted.  

The notions ' term' ,  'atomic formula'  and ' formula'  are inductively defined 
as follows: 

1. all individual constants and variables of sort 0. are terms of sort a; 

2. if f is an n-ary function symbol of sort am �9 �9 �9 0-n ~ 0.n+l and t l ,  �9 �9 t~ 
are terms of sorts 0-1, . . . ,  0.,~, respectively, then f ( t l , . . . ,  tn) is a term 
of sort 0.n+ 1; 

3. if F is an n-ary predicate symbol of sort 0-1 ""0-n and t l ,  . . . ,  t~ are 
terms of sorts 0-1, . . . ,  o-n, respectively, then F ( t l , . . . ,  t~) is an atomic 
formula; 

4. M1 atomic formulas are formulas; 

5. if r and ~b are formu]as and v is a variable, then -,r r A r and Vvr 

are formulas. 

V, 4 ,  ~ ,  _1_, T and 3 are defined as usual. A Horn clause is a universally 
quantified formula of the form (r A . . .  A Cn) ~ r where r . . . ,  r 
are atomic formulas. 

3 .2 .  F o r m a l  S e m a n t i c s  

A model  for DA is a s tructure 

!~l = (D0, D1, V), 

where Do and D1 are non-empty sets and V is a function such that :  

1. V(t)  E D ,  for each term t of sort 0.; 

2. V ( f )  is a mapping from D~, • . . .  • Da ,  to Dg,+~ for each n-ary 
function symbol f of sort 0.1""0.n ~ 0"n+1; 

3. V ( F )  C_ D ~  • " "  • D~.~ for each n-ary predicate symbol  F of sort 

0"1 " ' ' 0 "n .  

!Yl [= r means that  r is true in _r This notion is defined as follows: 
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2. 1= 

F(tl , . . . , tn)  iff ( V ( t l ) , . . . ,  V(tn)) E V(F); 

iff V: r 

r iffg~t 1= ~b and ~ l= ~b; 

4. ~ [= Vvr iff ~O1(d/v) I--- r for all d E D~, where v is a variable of sort 
a,  and where 9)t(d/v) is the model which is identical to 9Jr except that 
V(v)=d.  

~, 9)l ~ r means that if 9)t ]= r for all r E ~, then 9Jr [= r ~ ]= r means 
that ~,  9Jr ~ r for all models 9~. 

3 . 3 .  A x i o m a t i z a t i o n  

Axiom schemes: 

(DA1) all truth-functional tautologies; 

(DA2) Vvr ~ r where t is free for v in r provided that v and t 
are of the same sort. 

Rule schemes (where t- r means that r is a theorem): 

(DAR1) if  ~- r and ~- r ~ r  then t- ~p; 

(DAR2) if t- r ~ r then F- r ~ Vv~b, provided that v is not free in r 

E t- r means that r is derivable from E, a notion which is defined as usual. 

3 .4.  S o u n d n e s s  a n d  C o m p l e t e n e s s  

E ~ - r  ~ E l  = r  See, e.g., [4, ch. 8]. 

3 .5.  I n f o r m a l  I n t e r p r e t a t i o n  

Sort 0 will be regarded as the category of individual objects (including 
agents), sort 1 as the category of individual events, processes and states 
of affairs (including acts, activities and states of activity). All entities in 
the latter class will be called 'events' for the sake of brevity. Thus, individ- 
ual variables of sorts 0 and 1 are individual object variables and individual 
event variables, repectively; individual constants of sorts 0 and 1 are indi- 
vidual object constants and individual event constants, respectively; and the 
sets Do and D1 (in the formal semantics) are the sets of individual objects 
and individual events, respectively. 
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3.6.  D e s i g n a t e d  S y m b o l s  

The following predicate sylnbols and function symbols are notated and in- 
terpreted in special ways. 

Symbol 
Fr 

r l  
rl 0, 

Meaning 
is forbidden 
is obligatory 
is permitted 
is waived 
brings about 

Notation 
Forb 
Obl 
Perm 
Waiv 
Eft 

Symbol 

f l ~ l  
flO 1~-~1 

Meaning 
being forbidden 
being obligatory 
being permitted 
being waived 
bringing about 

Notation 
forb 
obl 
perm 
waiv 
eft 

Note that,  in all these cases, f [ ~ l  represents the gerund of the predicate 
expressed by F j .  We shall adopt the following important interpretational 
convention: 

[ f [ ~ l  represents tile gerund of the predicate expressed by F/~ ] 

3.7.  E x a m p l e s  of  T e r m s  a n d  F o r m u l a s  

In the following examples, copier is a constant of sort 0 and empl a function 
symbol of sort 0 ~ 1. 

1. Eft(a, empl(copier)) ['a brings about the employment of the copier', 'a 
uses the copier']; 

2. elf(a, empl(copier)) ['a's [bringing about the] employment of the copier']; 

3. Perm(eft(a, empl(copier))) ['a is allowed to use the copier']; 

4. Perm(eft(a, perm(eft(b, empl(copier))))) ['a is permitted to permit b to 
use the copier']; 

5. Eft(a, elf(b, a)) ['a makes b do a']. 

Note that Forb, Obl, Perm, Waiv and Eft cannot occur within the scope of 
Forb, Obl, Perm, Waiv and Eft. Forb, Obl, Perm, Waiv and Eft are predicate 
symbols; only terms can occur in their range. These terms may, of course, 
contain function symbols, such as eft and perm in the last two examples. 
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3.8.  D e f i n e d  O p e r a t o r s  

1. [F/~(tl,.. . ,t~)]* a=f f [ ~ l ( t l , .  " .,t,~);4 

2. F(r af Forb([r 

3. O(r df Obl([r 

4. P(r df Perm([r 

5. w(r 

6. E(t, r af Eft(t, [r 

An example: 

P(E(a, Empl(copier))) = Perm([E(a, Empl(copier))]*) 

= Perm([Eff(a, [Empl(copier)]*)]*) 

= Perm(eff(a, empl(copier))). 

Note that F, O, P, W and E may occur within the scope of F, O, P, W and 
E. 

Von Wright abandoned the first-order approach to deontic logic because 
he could not imagine how nested prohibitions, obligations, permissions and 
waivers could ever be handled in it [18, Preface]. The just-presented defini- 
tions suggest that he abandoned hope too early. Nested deontic construc- 
tions can be made sense of after all. 

3.9.  D X :  A P a r t i a l  h - n p l e m e n t a t i o n  of  D A  

The logical system DA is purely first-order, so the standard techniques from 
the field of logic programming can be applied. The fact that DA is two- 
sorted is no obstacle to this [6]. Ronald M. Lee's deontic expert shell DX 
is a partial implementation (written in Prolog) of the Horn clause fragment 
of DA [5, 10, 12, 13]. When one takes a look at Lee's description of DX, it 
is not immediately apparent tha~t this is the project he has carried out. He 

4The [ ]* nota t ion  is taken from Reichenbach [11, p. 269]. However, Reichenbach 
regarded [F~(f l  . . . . .  t,0]* as a primitive predicate symbol (of sort 1, from our point  of 
view), whereas we regard it as a defined singular term (of sort 1). Reichenbach would 
have wri t ten  the la t ter  te rm as (w)[F~(t~ . . . .  , t,,)]*(v), where v is a variable of sort I (in 
our terminology).  An example may make this clearer. Let F~ s tand for 'George VI is 
crowned' .  We represent  ' the  coronation of George VI' as [F~ *, which is by definition 
equivalent  with f 0 ~  (x), whereas Reichenbach (ibid.) represented it as (w) [F  ~ 
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gives the following Backus-Naur definition of his language, which we shah 
call LX [5, p. 11]: 

<rule> ::= <condition> 

<rule> ::= if <conditions> then <condition> 

<rule> ::= <condition> if <conditions> 

<conditions> ::= <condition> 

<conditions> ::= <condition> and <conditions> 

<condition> ::= <predicate> 

<condition> ::= forbid(<action>) 

<condiZion> ::= oblig(<action>) 

<condition> ::= permit(<action>) 

<condition> ::= waiv(<action>) 

<action> ::= <agent>:<condition> 

Lee's terminology is different fl'om ours. Things fall into place as soon as 
the following translation table is used. 

LX 
forbid 
oblig 
permit 
waiv 
: ( inf ix)  
<predicate> 
<condition> 

<action> 
<conditions> 
<rule> 

LA 
F 
0 
P 
W 
E (prefix) 
atomic formula 
atomic formula or formula of one of the following forms: 
F(r O(r P(r W(r where r is an <ac t ion> 
formula of the tbrln E(t, r where r is a <cond i t i on>  
conjunction of <condi t ion>s  and <act ion>s  
Horn clause 

The following formula is an example of a rule in Lee's sense: 

permit(X: permit(Y: use-copier)) if chair(X). 

This corresponds to the following formula of LA: 

VxVy (Chair(x) -~ e(E(x,  P(E(y, s 

It will be clear that all formulas of LX can be translated into LA. The 
converse does not hold: 

�9 LA-formulas of the ibrms F(r O(r P(r and W(r cannot be trans- 
lated into LX unless r is an action sentence, i.e., unless r  of the form 
E(t, r (this is Lee's way of doing justice to the ' Tunsol len  rather than 
Se inso l len '  thesis from classicM ethics); 
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�9 LA-formulas of the form E(t , r  cannot be translated into LX if r is 
itself an action sentence, i.e., if r is of the form E(t', r  

These differences between LX and LA disappear if the last five lines of Lee's 
definition are replaced by the following ones: 

<condition> : := forbid(<condition>) 

<condition> ::= oblig(<condition>) 

<condition> ::= permit(<condition>) 

<condition> : := waiv(<condition>) 

<condition> : : = <agent> : <condit ion> 

4. T h e  L o g i c a l  S y s t e m  D B  

4.1. Limitations of DA 

DA has a major  shortcoming: complex actions and obligations cannot be 
represented in it. 5 Some examples: 

1. a's doing non-a; 

2. a's doing a or ~; 

3. a's not doing a is obligatory (it is obligatory that a does not do a); 

4. a's doing fl upon doing a is obligatory (it is obligatory that if a does 
a,  he does fl). 

The solution is simple: following Segerberg [15], we enrich the language with 
Boolean operators. 6 

4.2. The Language (LB) 

LB is the same as LA, except that: 

1. The following special symbols are added: 

(a) two designated individual constants of sort 1 :0  and 1; the former 
represents the empty (impossible) event, the latter the universal 
(necessary) event; 

SReichenbach's work had the same shortcoming; he did not pay attention to complex 
events. 

6There are several differences between our account and Segerberg's. (1) Segerberg 
considered only one sort of singular terms, namely event-ternls. (2) He did not consider 
quantification over events, although he did use open formulas with event-variables which 
were implicitly regarded as being universally quantified. (3) Forb and Perm were taken 
a s  the primitive deontic predicates. 
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(b) a designated flmction symbol of sort 1 ~-~ 1: -; this symbol is read 
as 'not ' ,  'non',  or ' the conlp]ement of'; 

(c) two designated function symbols of sort 11 ~ 1: Iq and I.J; these 
symbols are read as 'and'  and 'or', or as ' the intersection of' and 
' the union of', respectively; 

(d) a designated predicate symbol of sort 11: '= ' ;  this symbol is read 
as 'is identical with'. 

2. Obl and obl are the only primitive deontic symbols; the other deontic 
symbols are defined as follows: 

(a) Forb(t) d=f Obl(7); 

(b) Perm(t) __af -~Forb(t); 

(c) waiv(t) 

(d) forb(t) d=f obl(7); 

(e) perm(t) forb(t); 

(f) waiv(t) a f obl(t). 

Note that  only the second and third definitions are stateable in LA. 

Some examples of terms and formulas (cL w 

1. e f f ( a ,~ ) [ ' a ' s  doing non-a']; 

2. eft(a, a LI/~) ['a's doing a or fl']; 

3. Obl(eft(a,a))  ['a's not doing a is obligatory']; 

4. 0bl(eft(a, a)  LJ elf(a, fl)) ['a's doing/3 upon doing a is obligatory']. 

4 .3 .  F o r m a l  S e m a n t i c s  

A model for DB is a structure 

9J1 = (Do, B ,V) ,  

where Do is a non-empty set, B = (D1,_0,1, - ,  N, U) is a Boolean algebra, 
and V is a function which satisfies the following conditions in addition to 
those which were already mentioned in the definition of the DA-models: 

1. v ( 0 )  = 9_; 
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2. V(1)= i; 

a. v ( ~ ) = - v ( t ) ;  

4. Y(h  n t2 )=  y( t l )N v(t2); 

5. v ( t ,  u t~) = v ( t o  u v(t~); 

6. V ( = ) =  {(d,d> : d e  D,}. 

Note that D1 may be regarded as the power-set of the set D1 in our previous 
models. V may accordingly be regarded as an assignment of sets of events 
(rather than single events) to event-terms. 

4.4. A x i o m a t i z a t i o n  

The following axiom schemes are to be added to the axiom schemes of DA: 

(DB1) 

(DB2) 

(DB3) 

(DB4) 

(DB5) 

(DB6) 

(DB7) 

X=X;  

x = f ~ ( r  ~ r  where Co(fix) is a formula which arises 
from r by replacing some free occurrences of X by f and f is free 
for the occurrences of X that it replaces; 

xnf=fnx, xU~=fux; 

xn (fuO = (xn f) u(xn O,xu (fn ~) = (xuf) n (xUO; 

X 01 =X,X UO=X; 

x n ~ =  O, xU~ = i; 

0 # 1 .  

The rule schemes are as before. 

4.5. S o u n d n e s s  a n d  C o m p l e t e n e s s  

E F r r E I= r Proof: similar to the proof in [15]. 

4.6. I m p l e m e n t a b i l i t y  

We have not yet studied the implementability of (useful fragments of) DB. 
The new axiom schemes give rise to various complications, depending as 
they do on both the identity symbol [6, w and the complementation oper- 
ator, which has the same computationally troublesome properties as classicM 
logical negation. 
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4.7.  D e f i n e d  O p e r a t o r s  

The following definitions are to be added to those in w 

1. [-1r a2 [r 

2. [r ^ r d2 [r n [r 

Note that [Vxr is not defined. We shall also assume that [tl = t2]* is not 
defined. Some examples of formulas: 

1. O(~E(a, r ['it is obligatory that a does not do r 

2. O(E(a, r ~ E(a, ~b)) ['it is obligatory that if a brings it about that  r 
then he brings it about that ~b']. 

4 .8 .  D e r i v e d  R u l e s  of  I n f e r e n c e  

(DBR1) F p c r 1 6 2  ~ F D B [ r 1 6 2  

Here Fpc r means that r is a theorem of the propositional calculus. This rule 
scheme is a consequence of the correspondence between Boolean algebra and 
propositional logic; see, e.g., [8, w Since r and r contain no quantifiers 
and no occurrences of '= '  ([r and [r would not be defined otherwise), 
and we clearly have FDB r ~ ~P ~ Fpc r ~ r  provided that r and r 
contain no quantifiers and no occurrences of '= ' ,  we may also, more simply, 
write: 

(DBR2)  F r ~ r ~ F [r = [r 

The following rule schemes are derivable fl'om the latter scheme: 

(DBR3) F r ~ r ~ F O(r ,--, 0 ( r  

(DBR4) F r ~ r ~ F E(x,r  ~ E(x,~b). 

It is to be noted that (r ~ r  ~ [r = [r is not a theorem. This has an 
important consequence: Davidson's celebrated criticism [3, pp. 117-118] of 
Reichenbach's proposals [1 l, w is completely unjustified (cf. w below). 
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4.9.  E x p r e s s i v e  L i m i t a t i o n s  

A (partially) de dicto obligation such as 'everybody ought to love some- 
body someday' (free after Dean Martin) cannot be represented in LB. This 
sentence is representable as 

VxO( 3y3dLoves(x, y, d)) 

in standard deontic logic [1]. The latter formula does, however, not belong 
to LB. It remains to be seen whether this is a serious limitation. Suppose, 
for example, that there is only a finite number of people hi, . . . ,  h~ and that 
each man or woman hi has only a finite number of days ,(i) ,  . . . ,  t(i) on 
which he or she can love somebody. (Neither assumption is unrealistic.) The 
sentence can then be represented by the following LB-formula: 

A 0 ( V V Loves(hi, hk, d)). 
l < i < n  l < k < n  ,(i)<d<t(i) 

5. F r o m  D B  to  S t a n d a r d  D e o n t i c  Logic  a n d  B e y o n d  

5.1. System DC 

DC has the following axiom schemes in addition to those of DB: 

(DC1) 

(DC2) 

(DC3) 

(DC4) 

(DC5) 

(DC6) 

(DC7) 

(DC8) 

Obl(1); 

Obl(x n ,9 ~ (Obl(x)/x Obl ( { ) ) ;  

Eft(x, 1); 

Eft(x,X n ~) ~ (Eft(x,x)A Eff(x,~)); 
obl(1) = 1; 

obt(x n ~) = obl(x) n obl(~); 

eft(x, 1) ---- 1; 

el f (x ,  x n ,,) = elf (x,  x) n el f (x,  {). 

The corresponding semantic conditions are straightforward. Note that 
(DC1)-(DC4) correspond to the condition that V(0bl) and {e : (d,e) e 
Y(Eff)} are filters on B. 

The following formulas are derivable from (DC1)-(DC4): 

1. O(T); 

2. o ( r  A r  ~ (0 (r  ^ 0(~) ) ;  
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3. E(z, T); 

4. E(x, r A r ~ (E(x, r A E(x, r 

Axioms (DCh)- (DC8)  ensure that  DC is closed under  (DBR1) and hence 
under  (DBR3) and (DBR4).  

A sentential  operator  [] is known as a normal modal operator in sys tem 
E iff the following principles hold: 

1. t-~ C:](T); 

2. FE [](r A "q~) ~ ([](r A []('~)); 

3. e~ r ~ r ~ ~ [](r ~ [](r 

It will be Clear tha t  0 and E are normal  modal  operators  in DC, just  fike 0 
in s t andard  deontic logic [1] and A ('sees to it tha t ' ,  'brings it about  tha t ' )  
in Chellas's logic of action [2]. 

5 .2 .  S y s t e m  D D  

One feature of DC is unsatisfactory: there is no clear logical relat ionship 
between r and [r We remove this defect with the help of a predicate  
symbol  Occ of sort 1. Occ(a) is read as ' a  occurs '  (in case a is an event) ,  
' a  goes on '  (in case a is a process) or ' a  obtains '  (in case a is a s tate) ,  occ 
is the corresponding function symbol of sort 1 ~ 1. System DD has the 
following axiom schemes in addition to those of DC: 

(DD1) r +-, 0cc([r 7 

(DD2) X = occ(x).  

The  corresponding semantic conditions are s traightforward.  Axiom (DD2) 
ensures tha t  DD is closed under  (DBP~I) and hence under  (DBR3) and 
(DBR4).  

5.3. S y s t e m  DE 

Standard  deontic logic (SDL) has the following axiom scheme: 

(D) ~O(• 

Furthermore, most authors (e.g., Chellas [2]) adopt the following axiom 
scheme for the action operator E: 

Z(DD1) is similar to Reichenbach's r ~-* (3v)[4]*(v) [11, p. 271 (9)]; cf. note 4. 
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(E) E(z,  r ~ r 

These formulas become derivable if the following axiom schemes are added 
to the axiom schemes of DD: 

(DE1) -~Obl(0); 

(DE2) E f f ( x , x ) ~  0cc(x); 

(DE3) obl(0) = 0; 

(DE4) eff(x,x) E X. 

The corresponding semantic conditions are straightforward. Note that (DE1) 
corresponds to the condition that V(Obl) is a proper filter on B. Axioms 
(DE3) and (DE4)ensure that DE is closed under (DBR1) and hence under 
(DBR3) and (DBR4). 

The following metatheorems can now be proven: 

(*) [-SDL q~ if[ [-DE ~, provided that r belongs to the languages of both DE 
and quantified SDL; 

(**) [-CLA ~ il~ [-DE q~, provided that r belongs to the languages of both 
DE and quantified CLA, where CLA is Chellas's logic of action. 

In other words, we have now covered tt{e whole route from DX towards the 
standard modal account of deontic logic and the logic of action. 

5.4. S y s t e m  D F  

We may go even further: if we add the axiom scheme 

(DF) (F~(x l , . . . ,  x,~) ~ F~(xl , . . . ,  x,,)) 

f [ ~ ' ( x l , . . . , x ~ ) =  f[ .~l(xl , . . . ,x~) 

to DE in order to obtain system DF, we may prove such theorems as the 
following ones: 

1. (r *-* 3b) ~ [r = [~b]* (proof: by induction); 

2. (r ~ r  ~ ( o ( r  ~ o (~ ) ) ;  

3. (r  ~ 0) -~ (E(x, r ~ E(x, ~)). 

In other words, we get a purely extensional deontic logic of action. 
(Note, however, that 0 and E are, though extensional, definitely not truth- 
functional.) Since nobody would want such an excessively strong system 
(Davidson's criticism [3, pp. 117-118] of [11, w would apply to it), we 
mention DF only for the sake of curiosity. 
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5.5.  I m p l e m e n t a b i l i t y  

The remarks made in w apply here as well. Observations (*) and (**) 
suggest that  DE is in the same boat as de re quantified SDL and CLA 
as far as implementational issues are concerned. So the implementational  
advantages which we seemed to have in the case of DA are quickly lost once 
the latter system is made more 'orthodox'.  

6. C o n c l u s i o n  

Our enterprise started off as an investigation into the logical foundations 
of Lee's expert system DX. Although DX is rooted in the tradition of logic 
programming,  its logical import  was unclear at first sight. Uncovering the 
logical content of DX was not only an interesting puzzle: since DX is typical 
of much work in AI, our results may well be applicable in a wider domain. 

As soon as the logical content of DX was clarified, DX turned out to be 
inadequate. Systems DB-DE demonstrate what has to be added in order to 
let DA/DX qualify as a full-fledged deontic logic of action. It is conceivable 
that  similar expert systems in AI will have to be extended in analogous ways. 

We think that  it is important  that further work is carried out along the 
lines we have sketched. Since there is a growing need for deontic expert 
systems, such work is not only of academic interest: Society is waiting for 
US. 
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